15 research outputs found

    HYPRO: A Hybridly Normalized Probabilistic Model for Long-Horizon Prediction of Event Sequences

    Full text link
    In this paper, we tackle the important yet under-investigated problem of making long-horizon prediction of event sequences. Existing state-of-the-art models do not perform well at this task due to their autoregressive structure. We propose HYPRO, a hybridly normalized probabilistic model that naturally fits this task: its first part is an autoregressive base model that learns to propose predictions; its second part is an energy function that learns to reweight the proposals such that more realistic predictions end up with higher probabilities. We also propose efficient training and inference algorithms for this model. Experiments on multiple real-world datasets demonstrate that our proposed HYPRO model can significantly outperform previous models at making long-horizon predictions of future events. We also conduct a range of ablation studies to investigate the effectiveness of each component of our proposed methods.Comment: NeurIPS 2022 camera-read

    A Graph Regularized Point Process Model For Event Propagation Sequence

    Full text link
    Point process is the dominant paradigm for modeling event sequences occurring at irregular intervals. In this paper we aim at modeling latent dynamics of event propagation in graph, where the event sequence propagates in a directed weighted graph whose nodes represent event marks (e.g., event types). Most existing works have only considered encoding sequential event history into event representation and ignored the information from the latent graph structure. Besides they also suffer from poor model explainability, i.e., failing to uncover causal influence across a wide variety of nodes. To address these problems, we propose a Graph Regularized Point Process (GRPP) that can be decomposed into: 1) a graph propagation model that characterizes the event interactions across nodes with neighbors and inductively learns node representations; 2) a temporal attentive intensity model, whose excitation and time decay factors of past events on the current event are constructed via the contextualization of the node embedding. Moreover, by applying a graph regularization method, GRPP provides model interpretability by uncovering influence strengths between nodes. Numerical experiments on various datasets show that GRPP outperforms existing models on both the propagation time and node prediction by notable margins.Comment: IJCNN 202

    Language Models Can Improve Event Prediction by Few-Shot Abductive Reasoning

    Full text link
    Large language models have shown astonishing performance on a wide range of reasoning tasks. In this paper, we investigate whether they could reason about real-world events and help improve the prediction performance of event sequence models. We design LAMP, a framework that integrates a large language model in event prediction. Particularly, the language model performs abductive reasoning to assist an event sequence model: the event model proposes predictions on future events given the past; instructed by a few expert-annotated demonstrations, the language model learns to suggest possible causes for each proposal; a search module finds out the previous events that match the causes; a scoring function learns to examine whether the retrieved events could actually cause the proposal. Through extensive experiments on several challenging real-world datasets, we demonstrate that our framework -- thanks to the reasoning capabilities of large language models -- could significantly outperform the state-of-the-art event sequence models.Comment: NeurIPS 2023 camera-read

    Automatic Deduction Path Learning via Reinforcement Learning with Environmental Correction

    Full text link
    Automatic bill payment is an important part of business operations in fintech companies. The practice of deduction was mainly based on the total amount or heuristic search by dividing the bill into smaller parts to deduct as much as possible. This article proposes an end-to-end approach of automatically learning the optimal deduction paths (deduction amount in order), which reduces the cost of manual path design and maximizes the amount of successful deduction. Specifically, in view of the large search space of the paths and the extreme sparsity of historical successful deduction records, we propose a deep hierarchical reinforcement learning approach which abstracts the action into a two-level hierarchical space: an upper agent that determines the number of steps of deductions each day and a lower agent that decides the amount of deduction at each step. In such a way, the action space is structured via prior knowledge and the exploration space is reduced. Moreover, the inherited information incompleteness of the business makes the environment just partially observable. To be precise, the deducted amounts indicate merely the lower bounds of the available account balance. To this end, we formulate the problem as a partially observable Markov decision problem (POMDP) and employ an environment correction algorithm based on the characteristics of the business. In the world's largest electronic payment business, we have verified the effectiveness of this scheme offline and deployed it online to serve millions of users

    Prompt-augmented Temporal Point Process for Streaming Event Sequence

    Full text link
    Neural Temporal Point Processes (TPPs) are the prevalent paradigm for modeling continuous-time event sequences, such as user activities on the web and financial transactions. In real-world applications, event data is typically received in a \emph{streaming} manner, where the distribution of patterns may shift over time. Additionally, \emph{privacy and memory constraints} are commonly observed in practical scenarios, further compounding the challenges. Therefore, the continuous monitoring of a TPP to learn the streaming event sequence is an important yet under-explored problem. Our work paper addresses this challenge by adopting Continual Learning (CL), which makes the model capable of continuously learning a sequence of tasks without catastrophic forgetting under realistic constraints. Correspondingly, we propose a simple yet effective framework, PromptTPP\footnote{Our code is available at {\small \url{ https://github.com/yanyanSann/PromptTPP}}}, by integrating the base TPP with a continuous-time retrieval prompt pool. The prompts, small learnable parameters, are stored in a memory space and jointly optimized with the base TPP, ensuring that the model learns event streams sequentially without buffering past examples or task-specific attributes. We present a novel and realistic experimental setup for modeling event streams, where PromptTPP consistently achieves state-of-the-art performance across three real user behavior datasets.Comment: NeurIPS 2023 camera ready versio

    Continual Learning in Predictive Autoscaling

    Full text link
    Predictive Autoscaling is used to forecast the workloads of servers and prepare the resources in advance to ensure service level objectives (SLOs) in dynamic cloud environments. However, in practice, its prediction task often suffers from performance degradation under abnormal traffics caused by external events (such as sales promotional activities and applications re-configurations), for which a common solution is to re-train the model with data of a long historical period, but at the expense of high computational and storage costs. To better address this problem, we propose a replay-based continual learning method, i.e., Density-based Memory Selection and Hint-based Network Learning Model (DMSHM), using only a small part of the historical log to achieve accurate predictions. First, we discover the phenomenon of sample overlap when applying replay-based continual learning in prediction tasks. In order to surmount this challenge and effectively integrate new sample distribution, we propose a density-based sample selection strategy that utilizes kernel density estimation to calculate sample density as a reference to compute sample weight, and employs weight sampling to construct a new memory set. Then we implement hint-based network learning based on hint representation to optimize the parameters. Finally, we conduct experiments on public and industrial datasets to demonstrate that our proposed method outperforms state-of-the-art continual learning methods in terms of memory capacity and prediction accuracy. Furthermore, we demonstrate remarkable practicability of DMSHM in real industrial applications

    WeaverBird: Empowering Financial Decision-Making with Large Language Model, Knowledge Base, and Search Engine

    Full text link
    We present WeaverBird, an intelligent dialogue system designed specifically for the finance domain. Our system harnesses a large language model of GPT architecture that has been tuned using extensive corpora of finance-related text. As a result, our system possesses the capability to understand complex financial queries, such as "How should I manage my investments during inflation?", and provide informed responses. Furthermore, our system incorporates a local knowledge base and a search engine to retrieve relevant information. The final responses are conditioned on the search results and include proper citations to the sources, thus enjoying an enhanced credibility. Through a range of finance-related questions, we have demonstrated the superior performance of our system compared to other models. To experience our system firsthand, users can interact with our live demo at https://weaverbird.ttic.edu, as well as watch our 2-min video illustration at https://www.youtube.com/watch?v=fyV2qQkX6Tc

    Leveraging Large Language Models for Pre-trained Recommender Systems

    Full text link
    Recent advancements in recommendation systems have shifted towards more comprehensive and personalized recommendations by utilizing large language models (LLM). However, effectively integrating LLM's commonsense knowledge and reasoning abilities into recommendation systems remains a challenging problem. In this paper, we propose RecSysLLM, a novel pre-trained recommendation model based on LLMs. RecSysLLM retains LLM reasoning and knowledge while integrating recommendation domain knowledge through unique designs of data, training, and inference. This allows RecSysLLM to leverage LLMs' capabilities for recommendation tasks in an efficient, unified framework. We demonstrate the effectiveness of RecSysLLM on benchmarks and real-world scenarios. RecSysLLM provides a promising approach to developing unified recommendation systems by fully exploiting the power of pre-trained language models.Comment: 13 pages, 4 figure

    Enhancing Recommender Systems with Large Language Model Reasoning Graphs

    Full text link
    Recommendation systems aim to provide users with relevant suggestions, but often lack interpretability and fail to capture higher-level semantic relationships between user behaviors and profiles. In this paper, we propose a novel approach that leverages large language models (LLMs) to construct personalized reasoning graphs. These graphs link a user's profile and behavioral sequences through causal and logical inferences, representing the user's interests in an interpretable way. Our approach, LLM reasoning graphs (LLMRG), has four components: chained graph reasoning, divergent extension, self-verification and scoring, and knowledge base self-improvement. The resulting reasoning graph is encoded using graph neural networks, which serves as additional input to improve conventional recommender systems, without requiring extra user or item information. Our approach demonstrates how LLMs can enable more logical and interpretable recommender systems through personalized reasoning graphs. LLMRG allows recommendations to benefit from both engineered recommendation systems and LLM-derived reasoning graphs. We demonstrate the effectiveness of LLMRG on benchmarks and real-world scenarios in enhancing base recommendation models.Comment: 12 pages, 6 figure

    Enhancing Event Sequence Modeling with Contrastive Relational Inference

    Full text link
    Neural temporal point processes(TPPs) have shown promise for modeling continuous-time event sequences. However, capturing the interactions between events is challenging yet critical for performing inference tasks like forecasting on event sequence data. Existing TPP models have focused on parameterizing the conditional distribution of future events but struggle to model event interactions. In this paper, we propose a novel approach that leverages Neural Relational Inference (NRI) to learn a relation graph that infers interactions while simultaneously learning the dynamics patterns from observational data. Our approach, the Contrastive Relational Inference-based Hawkes Process (CRIHP), reasons about event interactions under a variational inference framework. It utilizes intensity-based learning to search for prototype paths to contrast relationship constraints. Extensive experiments on three real-world datasets demonstrate the effectiveness of our model in capturing event interactions for event sequence modeling tasks.Comment: 6 pages, 2 figure
    corecore